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a b s t r a c t

Research in cognitive psychology often focuses on how people deal with multiple sources of information.
One important aspect of this research is whether people use the information in parallel (at the same
time) or in series (one at a time). Various approaches to distinguishing parallel and serial processing
have been proposed, but many do not satisfactorily address the mimicking dilemma between serial and
parallel classes of models. The mean interaction contrast (MIC) is one measure designed to improve
discriminability of serial–parallel model properties. The MIC has been applied in limited settings because
the measure required a large number of trials and lacked a mechanism for group level inferences. We
address these shortcomings by using hierarchical Bayesian analyses. The combination of the MIC with
hierarchical Bayesian modeling gives a powerful method for distinguishing serial and parallel processing
at both individual and group levels, even with a limited number of participants and trials.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Situations in which people need to combine several sources
of information are ubiquitous. Often, people must switch among
cognitive strategies for dealing with these multitudinous sources
depending on the situation. Take for example a fighter pilot in com-
bat whose life depends on the successful, simultaneous utilization
of several sources of information, i.e., a parallel processing cogni-
tive strategy. In contrast, the same pilot may be required to utilize
rather different type of cognitive processing strategy when follow-
ing up lengthy preparatory flying technical procedures. For exam-
ple, to turn on plane’s engines an operator must usually conduct
several operations in a strictly non-overlapping sequence. The fail-
ure to stick to the strict sequence of operations may have a fa-
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tal consequence. In everyday life, deployment of different cogni-
tive strategies may not be associated with fatal outcomes, but may
nonetheless have important consequences.

Given the prevalence of tasks that require multiple sources of
information to be attend to, it is no surprise that the properties
of the cognitive processes underlying the combined use of those
sources of information is a major topic of investigation in modern
cognitive science. Cognitive scientists have operationalized the
four fundamental cognitive operations for dealing with multiple
sources. The first is the temporal organization of the information
processing. Processing may be serial, i.e., item-by-item analysis, or
parallel, i.e., all-items-at-once. The second is stopping rule, which
refers towhether a cognitive systemcan terminate processing after
completion of only a few processes, henceforth referred to as self-
terminating, or a system has to complete all processes, henceforth
referred to as exhaustive. The third is process interdependency: the
extent to which processes of interest depend on each other. The
fourth property is processing capacity, which refers to how much
processing resources are available for cognitive operations.
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Without carefully crafted empirical designs and inferential
tools, even processing characteristics as distinct as serial and paral-
lel processing can be perfectly indistinguishable. For example, the
standard serial and the limited capacity parallel models cannot be
distinguished from each other using the conventional performance
measures such asmean response time or accuracy (e.g., Townsend,
1971, 1972; Townsend & Ashby, 1983, Chapter 14).

One framework that has resulted in success at assessing the
fundamental properties of cognitive operations is systems factorial
technology (SFT; Dzhafarov, Schweickert, & Sung, 2004; Houpt,
Townsend, & Donkin, 2014; Schweickert, Giorgini, & Dzhafarov,
2000; Townsend & Nozawa, 1995). The SFT approach rests on
rigorously testedmathematical tools for discriminating serial from
parallel processing exhaustive from self-terminating processing,
process (in)dependence and the capacity of the system under
investigation. In the current project we focus on discriminating
between the parallel or serial processing of two sources of
information, however SFT has been generalized to diagnosing
underlying system of any number of processes (Fifić, 2016; Yang,
Fifić, & Townsend, 2014; Zhang & Dzhafarov, 2015).

In our current paper,wepresentmethods for inference based on
aparticularmeasure fromSFT, themean interaction contrast (MIC).
In the case of the mental architecture consisting of two processes
the MIC is defined as the second order difference of the mean
response time under manipulation of the speed of each process.
Formally, we are interested in two random variables representing
the duration of the two mental processes (Tx, Ty) and the random
variable representing the time to respond with both sources of
information (Txy). The duration of each process is manipulated
through themanipulation of the two external factors (fx and fy) that
are binary valued (Low and High).

∆2E

Txy; fx, fy


=


E


Txy; fx = Low, fy = Low


− E


Txy; fx = Low, fy = High


−


E


Txy; fx = High, fy = Low


− E


Txy; fx = High, fy = High


.

Formore practical purpose, the above equation could bewritten
in the form of mean response times, where RT indicates the mean
observed response time and the subscript indicate the factor levels
for fx and fy,

MIC = (RTLL − RTLH) − (RTHL − RTHH)

= RTLL − RTLH − RTHL + RTHH.

To drawmeaningful inferences based on the MIC, an important
condition of selective influence must hold (Dzhafarov, 2003;
Dzhafarov et al., 2004; Townsend & Thomas, 1994). In general,
the condition of effective selective influence requires that a single
external factor exclusively affects only one subprocess and that
affect has some measurable consequence. In our two-process
mental architecture example, effective selective influence means
that by varying between the two values (Low and High) the
experimental manipulations fx and fy exclusively affect only their
respective processing times Tx and Ty. Further, the manipulation
must have an affect, i.e., (Tx; fx = Low) > (Tx; fx = High). The
difference in processing time (for each Tx, Ty) between Low and
High levels of manipulation in the relevant literature is referred
to as the saliency effect. In some cases, selective influence can be
directly assessed (Dzhafarov & Kujala, 2010, 2014), although in
the general case, it is only possible to test for violations of the
condition. The most common approach is to check for stochastic
dominance between


Txy; fx = Low, fy = Low


and Txy when either

fx = High or fy = High:
P(RTLL ≤ t) ≥ P(RTLH ≤ t)
P(RTLL ≤ t) ≥ P(RTHL ≤ t)

as well as between Txy when either fx = Low or fy = Low and
Txy; fx = High, fy = High


,

P(RTLH ≤ t) ≥ P(RTHH ≤ t)
P(RTHL ≤ t) ≥ P(RTHH ≤ t).

This condition is implied by selective influence (Schweickert et al.,
2000; Townsend & Thomas, 1994).1

The sign of the MIC is used to diagnose two of the fundamental
properties in cognitive operations. When each subprocess is
selectively influenced in a serial system, then the MIC will be zero
(regardless of stopping rule), whereas in a parallel system the MIC
will be non-zero. Parallel, exhaustive processing leads to MIC < 0
and parallel, first-terminating processing leads to MIC > 0. Like
the parallel, first-terminating processes, coactive processes will
also lead to MIC > 0.

SFT includes a more powerful statistic to diagnose processes,
the survivor interaction contrast function, SIC(t). The SIC can be
estimated from the empirical survivor (or conversely 1-empirical
survivor = empirical cumulative distribution function),

Ŝ(t) =
#RT > t
#RT

= 1 −
#RT ≤ t
#RT

= 1 − F̂(t).

In which # stands for number of response trials observed. To
calculate the empirical SIC, empirical survivor functions are
calculated for each factorial condition, and used in the form of
the second order difference analogously to the MIC (Houpt &
Townsend, 2010; see also Houpt, Heathcote, & Eidels, 2017; Houpt,
MacEachern, Peruggia, Townsend, & Van Zandt, 2016 for Bayesian
alternatives).

SIC(t) = ∆2Sxy (t) = [SLL(t) − SLH(t)] − [SHL(t) − SHH(t)] .

As with the MIC, the subscript indicates the factor levels for fx and
fy (Low and High) associated with each subprocess of interest. The
relationship between the SIC and MIC is straightforward, MIC =

∞

0 SIC(t) dt . This relationship makes it clear that the SIC provides
at least as much information as the MIC. Indeed, unlike the MIC
described above, all five canonical mental architectures could be
distinguished based on the shape of SIC function. For example,
serial exhaustive and serial first-terminating function, both predict
MIC = 0, but predict different SIC functions.

While the SIC has more diagnostic power, the MIC has some
advantages over the SIC for diagnosing underlying mental archi-
tectures. First, fewer trials are needed to achieve a good estimate
of the MIC because it is a single value, unlike the SIC which is an
entire function. In practice this means that running a study using
MIC could require fewer trials then a study using SIC. If there is
little constraint on the number of trials that can be collected, SIC
might be preferred (e.g., Townsend & Fifić, 2004). In many cases,
conducting a large scale study involving a large number of stimulus
trials per subject is not a realistic scenario. Research participants,
are usually reluctant to participate in lengthy studies, and aremore
likely to drop out. Hence, long term studies can require signifi-
cant financial compensation to recruit and retain participants. Ad-
ditionally, subjects from particular populations are only available
for study participation for a brief period of time. This can be due to
limited mental capabilities and are not able to focus for a long pe-
riod of time, or due to other constraints on their time. For example,
autistic children (cf. Johnson, Blaha, Houpt, & Townsend, 2010), or

1 See Heathcote, Brown, Wagenmakers, and Eidels (2010) for a survey of
approaches to testing stochastic dominance.
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air force pilots (cf. Schreiber, Stock, & Bennett, 2006)would only be
available to serve as experimental participants for a limited num-
ber of trials. In such situations it is highly impractical to conduct
repeated study sessions limiting a researcher to a relatively smaller
number of response trials.

1.1. Existing approaches to statistical inference with the SIC and MIC

A number of approaches have been introduced for making
inferences based on the SIC and MIC (see Houpt & Burns, 2017, for
a review). The initial approach to testing the MIC values relied on
using a factorial ANOVA design. ANOVA is an almost natural choice
given the factorial nature of an SFT study’s manipulations. ANOVA
is used to test the hypothesis on whether or not an observed MIC
value significantly departs from zero value,whichwas identified as
the null-hypothesis (cf. Kirk, 2012). An alternative, nonparametric
approach was to use bootstrapping (see Van Zandt, 2002, for
details) to construct confidence intervals around observed MIC
values. If zero is within the confidence intervals of the estimated
MIC, a researcher would fail to reject null-hypothesis, otherwise
the null is rejected and the sign of the MIC value determines
whether the MIC shows overadditivity, or underadditivity (see,
e.g., Yang, Chang, & Wu, 2012; Yang, Little, & Hsu, 2014). An
alternative, nonparametric test, based on a generalization of
the Kolmogorov–Smirnov test, has also been proposed as an
approach to analyzing the SIC shape, and hence whether the
MIC is significantly different from 0 (Houpt & Townsend, 2010).
Houpt and Townsend (2010) also compared standard ANOVA and
nonparametric interaction tests for testing the null-hypothesis
that MIC = 0.

There are two main limitations of these existing approaches.
The first limitation is related to the statistical inference and the
diagnostic power of the SFT nonparametric methods. Although
very useful at the initial stages of the development of the SFT
technology, statistical inference based on null-hypothesis testing
can be limiting. Using the ANOVA and bootstrapping approaches
described above the null-hypothesis is exclusively linked to one
mental architecture MIC = 0, which is the signature of serial
processing. A significant result would indicate that processing is
not serial, but there is no way to reject parallel processing: A
classical failure to rejecting the null hypothesis, that is likelihood
that MIC = 0 given the null is true, does not imply that the
alternative hypothesis is not true MIC ≠ 0, given the data.

To address such Bayesian arguments other alternative analyses
have recently been proposed for the SIC. Houpt et al. (2016)
proposed a semiparametric Bayesian approach for estimating
posterior distributions over SICs. Houpt et al. (2017) have also
developed parametric and nonparametric Bayesian approaches to
estimating SIC shape. However, neither of these approaches fully
address the second limitation, which is the inability of the current
methods to make group level inferences that involves quantitative
statistical description of a sample, that can be used to generalize to
the entire population.

Until recently the SFT approach has been focused on individ-
ual subject analysis, in addition to the statistical inference about
the underlying cognitive operations. Indeed, the many SFT stud-
ies made a final conclusion in the form of basic descriptive statis-
tics, nominally classifying subjects based on their achievement.
For example, a short-term memory study indicated individual dif-
ferences across and within experimental conditions of different
short-term memory manipulations. The major finding was that
some subjectswould switch from serial to parallelwhen the timing
condition was changed (Townsend & Fifić, 2004). Although these
results are very useful, the nominal categorizationbasedon the sta-
tistical inferences using the null-hypothesis test, tells little about
the population from which the subjects had been sampled.
To summarize, the two limitations of statistical inference
with SIC/MICs have been discussed, the first one being logically
limited commitment to the null-hypothesis testing, and the second
one being the lack of group level analysis. Both limitations can
jeopardize the practical power of the SFT method, with possibility
to systematically biasing inferences.

To address these limitations, we propose hierarchical Bayesian
analysis. Hierarchical modeling allows for compromise between
modeling individual differences and group level information
(cf. Busemeyer & Diederich, 2010, Chapter 6). By employing a
Bayesian approach, we can use priors to incorporate information
about task constraints on a likelihood that some fundamental
processing property is present. For example, when exhaustive
processing is required by the task and accuracy is high, there is low
prior probability that first-terminating processing was employed,
hence MIC is less likely to be positive. A Bayesian approach can
be used to estimate posterior probabilities of each category of
MIC (less than, greater than or equal to zero) rather than being
limited to testing the null-hypothesis that MIC = 0. These MIC
posterior probabilities can be estimated at both the individual
level, indicating how likely each MIC category is for each subject,
as well as the group level.

In the next section, we will describe the hierarchical Bayesian
model for the MIC, then we will examine the modeling approach
applied to simulated data and a data set that is commonly used to
validate SIC statistics.

2. Hierarchical Bayesian MIC

Our full model is given in Table 1 and depicted in Fig. 1. The
central component of the model is a linear model of the mean
response time,much like an ANOVA (cf. Rouder, Morey, Speckman,
& Province, 2012). We derived this linear model based on two
principles. First, the MIC is the main variable of interest, so we
needed it to be explicitly represented. This allows us to set priors
on both its category and magnitude. Second, we ensured that the
variability of the prior on themean for each conditionwould not be
different across the salience levels. There are a number of different
possibilities for this matrix. For our purposes, we chose,MIC

∆2
∆1
µ

 =


1 −1 −1 1

−1/2 1/2 −1/2 1/2

−1/2 −1/2 1/2 1/2

1/4 1/4 1/4 1/4


µHH

µHL
µLH
µLL

 .

Here, MIC is the mean interaction contrast, ∆1 is the average
increase in mean response time due to a change in salience on
process 1 across salience levels on Channel 2 (and likewise for∆2),
and µ is the grand mean response time.

Thus, if we set our priors on the MIC, ∆i and grand mean, they
can be translated into priors for the mean RT at each salience level
using the inverse of the mapping above,µHH

µHL
µLH
µLL

 =


1/4 −1/2 −1/2 1

−1/4 1/2 −1/2 1
−1/4 −1/2 1/2 1
1/4 1/2 1/2 1


MIC

∆2
∆1
µ

 .

For theMIC,we set up the likelihood as amixturemodel of three
categories (χ ) for each subject (superscript-s), one in which the
MIC > 0, one with MIC < 0 and one with MIC = 0. Each subject’s
data had its own categorical distribution over the three cases
with a Dirichlet prior over the case probabilities, (


p−, p0, p+


).

Each of those Dirichlet priors was drawn from a single Dirichlet
distribution representing the group level. The main idea of this
approach is to consider each category a potentially believable
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Fig. 1. Diagram indicating the hierarchical structure of the Bayesian model of
RT from which we deduce information about the MIC. Wiggling lines indicate
a random relationship (e.g.,. RTs are sampled from a gamma distribution),
and double, straight arrows indicate a deterministic relationship (e.g., µHH
is determined by the linear model at the center of the diagram). Note
that there is a separate prior for the rate multiplier of each RT gamma
distributions, although only one is depicted to reduce clutter. Thanks to
John Kruschke (http://doingBayesiandataanalysis.blogspot.com/), Rasmus Bååth
(http://www.sumsar.net/about.html) and Tinu Schneider (https://github.com/tinu-
schneider/DBDA_hierach_diagram) for making this figure possible.

structure, then use the mechanisms of MCMC to estimate the
posterior probability associated with each category (cf. Kruschke,
2010, Chapter 12).2

Assuming the RTs are on a millisecond scale, the prior on the
magnitude of the MIC in the two cases for which it was non-zero,
was a truncated Gaussian with mean 100 and standard deviation
50. Although a separate random variable was used for the MIC
magnitude depending on whether it was for the positive case or
negative case, all three cases shared the same∆ andµ parameters.
Thepriors on∆1 and∆2 eachhad a truncatedGaussiandistribution
with the same parameters (mean 100, standard deviation 50). For
the grand mean µ, we use a truncated normal distribution with
mean 400 and standard deviation 100.

In theory, the mean response time for a particular subject in a
condition could be negative under this model, e.g., when the effect
of the saliencemanipulations has highermagnitude than the grand
mean response time. Although this possibility should have no
probability in the data, it is important to constrain the parameters
of the prior distributions so that a negative mean response time is
unlikely or impossible.

For the likelihood of the response times, we used a gamma
distribution, which has the skewed shape commonly observed
in RTs and only has support on positive values. The gamma
distribution has two parameters, usually a shape and a rate, hence
one additional parameter was required. In this case, we chose
to use the rate as the additional free parameter. The standard
rate/shape parameterization of the gamma distribution could

2 JAGS and BUGS allow one to specify categorical priors directly, however due to
the sampling mechanism, it is not possible in Stan. To implement mixture models
in Stan, one can marginalize over the categorical parameter, leaving the category
probability parameters to remain without a variable explicitly representing the
category. See Stan Development Team, 2015, Section 10 for details.
Table 1
Complete description of themodel. Above, the prior distribution for each parameter
is listed. Below, the formula for the mean of the response time distributions as a
function of the parameters is given.

p−, p0, p+


∼ Dirichlet (0.25, 0.5, 0.25)
p−,s, p0,s, p+,s


∼ Dirichlet


p−, p0, p+


χ s

∼ categorical

p−,s, p0,s, p+,s


MICs

∼ truncated normal(100, 50)
∆s

2 ∼ normal(−100, 50)
∆s

1 ∼ normal(100, 50)
µs

∼ normal(200, 25)
ν

χ,s
x,y ∼ gamma(1, 1)

RT(n,s)
x,y ∼ gamma(νχ,s

x,y , µ
χ,s
x,y )

µ+,s
x,y =

(−1){x is H}(−1)y is H 1
4MICs

+(−1){y is H} 1
2 ∆s

2+(−1){x is H} 1
2 ∆s

2∆
s
1+µs

µ−,s
x,y =

(−1)(−1){x is H}(−1)y is H 1
4MICs

+ (−1){y is H} 1
2 ∆s

2 +

(−1){x is H} 1
2 ∆s

2∆
s
1 + µs

µ0,s
x,y = bxy∆s

2 + cxy∆s
1 + µs

then be recovered because the mean of a gamma distribution is
the shape parameter divided by the rate parameter. Like the ∆

parameters, we used only a single rate multiplier across the three
MIC cases. For the analyses reported below,we chose improper flat
priors over the positive real line for the rate multipliers to allow
flexibility in how the shape and rate traded off for a given mean
RT.

3. Application to simulated data

To better understand how well this model can be used to
assess MIC category, and hence discriminate serial and parallel
processing, we tested it on a series of simulated data. We var-
ied the architecture and stopping rule for processing two sources
of information, the parameters of interest that determine the
MIC category. Recall that selectively influenced serial models im-
ply MIC = 0 regardless of stopping rule, parallel models with
exhaustive stopping rules imply MIC < 0 and parallel mod-
els with first-terminating rules imply MIC > 0. In addition to
the sign of the MIC, other parameters can influence the magni-
tude of the MIC and precision with which it can be measured.
One of the most important parameters is the effectiveness of the
salience manipulation, i.e., how much faster each source of in-
formation is processed in a H salience condition relative to a
low-salience condition. Additionally, the amount of data, partic-
ularly the number of response times collected from each subjects
and the total number of subjects was varied.

3.1. Method

Data were generated assuming either 10, 15, or 20 subjects. For
each simulated subject, either 40, 50, 60, or 70 response timeswere
simulated per condition (e.g., 70 in the HH condition, 70 in the
HL condition, 70 in the LH condition, and 70 in the LL condition).
Each response time was simulated by combining the subprocess
durations (T1, T2) according the corresponding architecture and
stopping rule:

Parallel, Exhaustive: RT = max(T1, T2)
Parallel, First-Terminating: RT = min(T1, T2)
Serial, Exhaustive: RT = T1 + T2
Serial, First-Terminating: RT = T1 with probability

0.5; RT = T2 otherwise

http://doingBayesiandataanalysis.blogspot.com/
http://www.sumsar.net/about.html
https://github.com/tinu-schneider/DBDA_hierach_diagram
https://github.com/tinu-schneider/DBDA_hierach_diagram
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Within each data set, all simulated subjects had the same
architecture and stopping rule.

Subprocess durationswere generated assuming the completion
times were based on the first passage time of a Brownian motion
process, and hence followed an inverse Gaussian distribution,

f (t; α, ν) =
α

√
2πσ 2t3

exp


− (α − νt)2

2tσ 2


.

The threshold activation for a response, α, was set to 30 and the
diffusion coefficient, σ 2

= 1 for all simulations. The drift rate, ν,
depended on the condition. To simulate a low salience trial for a
subprocess, the drift rate was set to 0.1. For H salience trials, the
drift rate was set to either 1.5, 2, 2.5, or 3 times the low salience
drift rate.3

The Bayesian analyses were run using Stan (Stan Develop-
ment Team, 2014, 2015) on a combination of (Harris, 2008), the
Oakley cluster at the Ohio Supercomputing Center (Ohio Super-
computer Center, 1987, 2012), and Microsoft’s Azure service.4
Follow-up analyses were done using R statistical software (R De-
velopment Core Team, 2011) and the sft R package (Houpt, Blaha,
McIntire, Havig, & Townsend, 2013). The Stan code is included
as supplementary material (see Appendix A). We ran four chains
using 10,000 warm-up samples and 20,000 additional iterations
per chain.5 All chains were visually assessed for mixing and Gel-
man–Rubin R̂ values were less than 1.01 for all parameters.

3.2. Results

Summaries of the group level posterior and subject level
posterior are shown in Figs. 2 and 3 respectively. Each row
corresponds to a different model used to generate the data. The
left column gives the mean posterior probability that the MIC is
in the category predicted by the generating model (e.g., MIC > 0
for data generated from a parallel–first-terminating model). The
right column indicates the standard deviation of the posterior
probability of that MIC category. In the subject level data, the
values are averaged across the simulated subjects (i.e., the mean
posterior probability is the average across subjects of their
individual mean posterior probability; the standard deviation
is the average across subjects of the standard deviation of the
posterior probability that their MIC is in the given category).

The only parameter that had a clear effect on the posterior
probability over MIC category, for both the group and individual
level, was the strength of the salience manipulations (indicated
by line darkness in Figs. 2 and 3). At the lowest manipulations
strength, the most likely MIC is 0 for all of the models,
regardless of the number of subjects or the number of trials per
distribution. The posterior probability of positive and negative
MICs increases essentially linearly with an increase in salience for
the parallel–exhaustive data and parallel–first-terminating data
respectively. In the serial, first-terminating data, the posterior
probability stays essentially flat between 0.6 and 0.8 for the range
of salience. Interestingly, there seems to be a negative trend in

3 Increasing the drift rate while holding the threshold constant produces
stochastic dominance for this model. WithΦ() indicating the standard normal CDF,
the CDF of the first passage time is

F(t; α, ν) = Φ

t−1/2(tν − α)


+ e2ανΦ


t−1/2(tν + α)


.

Φ and exp are both monotonically increasing functions and increasing ν increases
the argument of each term and hence F .
4 http://azure.microsoft.com.
5 For more details on the parameters of a Stan analysis, see Stan Development

Team (2015).
the serial–exhaustive data, particularly with only 50 trials per
distribution.

The standard deviation of the category probability was also
affected by the salience strength. In the parallel model data,
the lowest rate multiplier resulted in lower standard deviations,
reflecting more certainty in the posterior that the MIC was zero.
This is likely due to the fact that the differences RTLL − RTLH
and RTHL − RTHH in the data are not large enough to make their
differences (the interaction) detectably different from zero. For the
larger rate multipliers in the parallel data, the standard deviation
was again smaller, but in this case reflecting more certainty that
the MIC was negative or positive for the exhaustive and first-
terminating data respectively.

In addition to the rate multiplier, the number of subjects af-
fected the group level posterior and the number of trials per sub-
ject affected the subject level posterior. More subjects led to lower
standard deviations at the group level, and lower standard devia-
tions at the subject level, although the effect was more prominent
at the group level. More trials per subject led to lower standard de-
viations at the subject level, but had little affect at the group level.

In general, we find these results quite promising. Most
experiments relying on SICs use 100 or more trials per distribution
and approximately 10 subjects (e.g., Yang, Hsu, Huang, &
Yeh, 2011). Our results indicate that, as long as the salience
manipulation is sufficient, this is enough data for drawing both
group and individual level inferences. The results regarding the
rate multiplier indicate an important cautionary note as well. If
the salience manipulation is not strong enough, data from any of
the four generating models will be classified as having a zero MIC.
Hence it is important to aim for strong salience manipulations
in designing experiments to be analyzed with this (or any other
SIC) analysis. Based on the impact of the rate multiplier, when the
salience is strong, the model should do well.

4. Application to data from a simple detection experiment

One of the standard data sets for testing SFT statistical analyses
is the dot detection data reported in Eidels, Townsend, Hughes, and
Perry (2015, Study I), which is available in the sft R package (Houpt
et al., 2014; R Development Core Team, 2011). In this study, one or
two small, low-contrast dotswere shownon a uniformbackground
either above the mid-line of the display, below the mid-line, or
both. Each dot could be displayed at a slightly higher contrast (H
salience) or lower contrast (low salience). There were three factors
manipulated within subjects: dot presence (present, absent); dot
salience (H, low); and task instructions (OR and AND). The task
instructions were held constant within a day. For example, on one
day participants were asked to respond affirmatively if either dot
was shown and negatively otherwise (OR rule). On another day,
participants were asked to respond affirmatively only if both dots
were shown and negatively otherwise (AND rule).

The simple detection study allows for the model assessment
by inspecting the observed MIC values. If the participants were
processing the visual stimuli in parallel, wewould expect a positive
MIC in the OR condition and a negativeMIC in the AND condition. It
is also possible that despite the ‘‘OR’’ instructions, the participants
used an exhaustive stopping rule in that condition, in which case
we would expect a negative MIC in both conditions. In the AND
condition, the participants would have low accuracy if they used a
first-terminating stopping rule, which was not the case. However,
if participants were using a coactive strategy, then a positive MIC
would be indicated in the AND condition. If a participant used a
serial strategy, either exhaustive or first-terminating, the resulting
MIC would be 0. For estimating the MIC, there were 200 trials for
each condition of interest (HH, HL, LH, and LL) for each instruction
type. The data set provided results that are consistent across

http://azure.microsoft.com
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Fig. 2. Simulation results for the group level probabilities. Each row corresponds to a model that was used to generate the data. The left column shows the mean posterior
probability that the groupMIC is in the category predicted by the model that generated the data. The right column shows the standard deviation of the posterior probability.
Within each panel, bars are grouped by the number of trials per subject, then by the number of subjects per group. The rate multiplier, representing the strength of the
salience manipulation, is indicated by the shade of the bars.
subjects, and clearly identifiable using the SFT approach. As such
the data set provides a valuable validation tool for the newanalysis.

In our initial application of the new hierarchical analysis to
the Eidels et al. (2015) data, we separately analyzed the AND
condition and the OR condition. As in the simulations section,
we ran four chains using 10,000 warm-up samples and 20,000
additional iterations per chain. All chains were visually assessed
for mixing and Gelman–Rubin R̂ values were less than 1.01 for all
parameters.

Results of the first analysis are reported in Table 2 and are
consistent with previous analyses based on non-Bayesianmethods
(Houpt et al., 2016; Houpt & Townsend, 2010). For the AND task,
the posterior probabilities strongly favored the negative MIC at
the group level and for each of the individuals. Similarly, for the
OR task, positive MICs had the highest probability at the group
level and for each of the individuals. Two participants, S2 and S4,
had relatively lower probabilities of positive MICs in the OR task,
with posterior odds ratios of 2.8 and 10 respectively for positive
over zero MICs. On the whole, there is strong evidence against
serial processing (which implies MIC = 0). Further, there is even
stronger evidence against coactive processing in the AND task
(MIC > 0) or exhaustive processing in the OR task (MIC < 0).
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Fig. 3. Simulation results for subject level probabilities. As in the previous figure, row corresponds to generating model. In this figure, the left column shows the posterior
probability that the subject MIC is in the category predicted by the model that generated the data, averaged across subjects. The right column shows the standard deviation
of the posterior probability averaged across subjects. Within each panel, bars are grouped by the number of trials per subject, then by the number of subjects per group. The
rate multiplier, representing the strength of the salience manipulation, is indicated by the shade of the bars.
Given that the model indicated the same MIC category across
participants, one may wonder whether the hierarchical model is
biased toward assuming a single MIC category for all participants.
While a bias toward homogeneity could be intentionally built
into the model by using a group level prior with most of
the probability mass focused on a particular MIC category, the
prior we used was meant to allow variability across subjects.
To explore the possibility that the model is biased toward
homogeneity, we recoded the Eidels et al. (2015) data so that each
participant–instruction combination was treated as a separate
member of a single group. I.e., the data from Subject 1 in the OR
condition was recoded as S1-OR while the data from him/her in
the AND condition was recoded as S1-AND, and likewise for the
other 8 participants.6 We ran four chains using 10,000 warm-up
samples and 20,000 additional iterations per chain. All chainswere
visually assessed for mixing and Gelman–Rubin R̂ values were less
than 1.01 for all parameters.

6 Although we could have built structure into the model relating a subject’s
performance across the instructions, we chose to treat the RTs for a given subject
with a given instruction as conditionally independent given the group MIC value.
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Table 2
Mean posterior probabilities of MIC category when AND and OR conditions were
analyzed separately. Note that although category probabilities must sum to one
for each posterior sample in the MCMC chain, rounding error means that these
posterior mean probabilities may sum to values slightly different from one.

AND task OR task
+ 0 − + 0 −

Group 0.14 0.06 0.80 0.73 0.11 0.17
S1 0.04 0.00 0.95 0.93 0.01 0.06
S2 0.04 0.06 0.90 0.53 0.38 0.09
S3 0.06 0.02 0.92 0.94 0.01 0.05
S4 0.02 0.02 0.95 0.63 0.27 0.10
S5 0.02 0.02 0.97 0.94 0.04 0.02
S6 0.06 0.11 0.83 0.95 0.03 0.02
S7 0.03 0.04 0.93 0.78 0.15 0.07
S8 0.05 0.08 0.87 0.92 0.05 0.03
S9 0.06 0.01 0.94 0.93 0.03 0.04

Table 3
Mean posterior probabilities of MIC category when AND and OR conditions were
analyzed as samples from the same group distribution. Si-AND indicates data from
theAND instructionswhile Si-OR indicates data from theOR instructions. Themodel
did not encode the relationship between AND and OR data from the same subject.
Note that although category probabilitiesmust sum toone for eachposterior sample
in the MCMC chain, rounding error means that these posterior mean probabilities
may sum to values slightly different from one.

+ 0 −

Group 0.46 0.06 0.48
S1-AND 0.04 0.00 0.95
S2-AND 0.09 0.05 0.86
S3-AND 0.09 0.02 0.90
S4-AND 0.06 0.02 0.93
S5-AND 0.04 0.01 0.94
S6-AND 0.15 0.11 0.74
S7-AND 0.07 0.04 0.89
S8-AND 0.12 0.07 0.81
S9-AND 0.07 0.01 0.92
S1-OR 0.93 0.01 0.06
S2-OR 0.56 0.28 0.17
S3-OR 0.94 0.01 0.05
S4-OR 0.58 0.17 0.25
S5-OR 0.93 0.02 0.05
S6-OR 0.93 0.02 0.05
S7-OR 0.77 0.08 0.15
S8-OR 0.91 0.02 0.07
S9-OR 0.93 0.01 0.06

The posterior probabilities in Table 3 indicate very little
probability of a zeroMIC, but roughly equal probabilities of positive
and negative MICs at the group level. This is noteworthy for two
reasons: First, it demonstrates that the model does not inherently
predict homogeneity. Second, it illustrates the advantage of using
a categorical prior for the sign of the MIC because the positive
and negative individual MICs were not averaged (which would
give a group MIC near zero). Despite the fact that the posterior
probabilities indicate heterogeneity, therewas still some shrinkage
in the individual posterior probabilities: For the AND data, the
probability of a negative MIC was slightly smaller and slightly
larger for positive MICs while the opposite was true for the OR
data. The probability of a zero MIC stayed was roughly the same
for the AND data as in Table 2. The probability of a zero MIC in the
OR data decreased some, particularly for those participants who
had slightly higher posterior probabilities of a zero MIC on the OR
condition in Table 2. It is clear that this model does not impose
homogeneity on the individuals.

On the whole, these results are quite promising. The model
was able to estimate a reasonable group level and individual level
posterior distribution. These results provide converging evidence
with the previously reported analyses of these data, which had
shown parallel processing for all participants and the appropriate
stopping rule application for the specific stopping rule task
instruction condition. The additional benefit of the new Bayesian
hierarchical approach is that it provides not only the individual
level information, but also the group level information.

5. Discussion

The survivor and mean interaction contrasts are among the
most powerful diagnostic methods for discerning whether people
using information in parallel or in series because they avoid the
model mimicking dilemma that plagues other methods. However,
the interaction contrast approach complicates the statistical
analysis so methods for statistical inference have been relatively
lacking until recently. Houpt and Townsend (2010) proposed
a null-hypothesis test for the SIC and compared ANOVAs and
adjusted-rank-transform tests for the MIC. More recently Houpt
et al. (2017) and Houpt et al. (2016) proposed Bayesian analyses,
but all of these approaches are for only individual level analysis.

In this paper we have addressed one of the major outstanding
issues in the statistical analysis of MICs, the lack of an approach
to make group level inferences. We demonstrated the efficacy
of a hierarchical Bayesian model of the MIC for making both
individual level and group level inferences with a relatively
small number of trials and subjects, using both a simulation
study and an application to a standard data set. Performance of
the analysis on the simulated data improves with having more
subjects, trials, and increased efficacy of the saliencemanipulation.
Nonetheless, with just 50 trials per condition, inferences based on
the model’s posterior probability of the MIC associated with the
data generating process led to quite satisfactory results.

Both the SIC and MIC measures are frequently used as an
individual subject assessment to indicate qualitative differences
in cognitive operations in a sample of subjects. An obstacle in
assessment of individual human subjects’ cognitive operations
is the requirement for a large number of trials per subject.
For example, Houpt and Townsend (2010) demonstrated their
statistical analysis with 200 trials per distribution, which when
trials are balanced appropriately (cf. Houpt & Townsend, 2012;
Mordkoff & Yantis, 1991) can mean 3200 trials per participant.
While this sample size would not cause a psychophysicist to balk,
many interesting populations, such as clinical groups, experts, and
some age groups, are available only for a limited time, and thus
permit only a smaller set of observations per individual. Although
it has less diagnostic power then SIC, the MIC can rely on a small
data sets, making it a more practical measure for cases in which
only limited numbers of trials are available per subject.

One unexpected finding was that with increased salience
manipulation efficacy but a limited number of trials, MIC category
recovery performance weakened for the data generated from a
serial exhaustive process. As the stimulus salience effect increased,
the posterior probability of a zero MIC decreased. The extent to
which this is a property of the particular assumptions we have
made, either in generating the data or the model itself, or if it is
an outcome specific to this sample data set, will be an interesting
topic of further investigation.

In addition to the simulated data, the model performed well on
the SFT data that is commonly used to assess SIC andMIC statistics
from Eidels et al. (2015). The Bayesian hierarchical MIC model
exhibited strong convergence to the conclusions drawn from SIC
level analysis in other papers (Houpt et al., 2017, 2016; Houpt &
Townsend, 2012). Perhaps the most challenging test of the model
was its application to heterogeneous experimental conditions in
which the subjects were using different processes. In the Eidels
et al. (2015) study, two experimental conditions were imposed by
the instructions. In the OR condition, subjects could use a first-
terminating stopping rule, while in the AND condition they have to
use an exhaustive stopping rule. To test whether the model is able



J.W. Houpt, M. Fifić / Journal of Mathematical Psychology 79 (2017) 13–22 21
to detect variation across subjects, the data in each condition were
treated as coming from the samegroup, thus havingheterogeneous
subject properties. When the hierarchical Bayesian MIC model
was applied to the data in this format, the analysis appropriately
identified the expected MIC category at the subject level and
indicated approximately 50% posterior probability for each of
the positive and negative MIC categories at the group level. This
demonstrated that the Bayesian MICmodel can identify individual
subjects’ differences within a group data set, and will not always
indicate that all subjects use the same cognitive operations.

Our approach to exploring the individual and group level MIC
analysis using the hierarchical Bayesian MIC model is similar in
many ways to the method proposed by Thiele and Rouder (2016).7
The overarching goals of both approaches are the same: (1) To
better quantify the evidence for either serial or parallel processing
at the group level (2) Rein in the bias toward heterogeneity
that results from analyzing subjects as unrelated. Similarly, the
structure of the models are quite similar, with a linear model
predicting the mean processing time across distributions within
a subject. The main distinction between the two approaches is
the focus on determining whether architecture is homogeneous
or heterogeneous across participants (Thiele, 2014) and estimating
posterior probabilities associated with each model (herein) when
heterogeneity is given positive prior probability (herein). There
are also some minor differences between the two models. First,
Thiele and Rouder (2016) use a normal distribution as their model
of the response times where as we use a gamma distribution.
They report choosing the normal distribution for two reasons,
computational tractability and the ease with which the sign of the
MIC can be constrained relative to non-normal distributions. From
our perspective, the computational power of Stan andHamiltonian
Monte-Carlo methods means that we can use a more realistic
distribution for response times and still obtain results from the
analysis in a reasonable time frame. Furthermore, our categorical
approach using the Dirichlet prior allows us to model the sign
of the MIC without additional difficulty in implementation. The
second difference between the approaches is the means by which
conclusions are drawn. The Thiele and Rouder (2016) approach
focuses on pairwise Bayes factor comparisons between models
with the MIC either constrained to be positive, negative or zero.
We use the categorical distribution to represent whether the MIC
is positive, negative or zero. On the surface, this amounts to only
a trivial difference as the Bayes factor can easily be calculated
from the categorical priors and vice versa. The advantage of our
approach is that the categorical distributions afford a hierarchical
representation of the MIC category. This allows us to directly
examine both the posterior probability that the MIC is a certain
category at the group level and at the subject level. Posterior
inferences regarding different MIC categories at the individual
level possible in principle with Thiele and Rouder (2016) model
in which each individual’s MIC category is independently sampled
from a normal prior distribution. One potential challenge for their
approach is that differences across subjects are treated as ratio
scale rather than categorical, hence a clear subset of participants
with positive MIC and another subset with negative MIC would be
treated as uncertain evidence for an average zero MIC.

Ultimately, whether using the Thiele and Rouder (2016)
approach or the one we have proposed, we hope that hierarchical
Bayesian analyses will allowmany more researchers to apply SFT.

7 Both research groups independently developed research approaches to
extending the SFT MIC tests using the hierarchical Bayesian model, and discovered
each others work through presentations of their early results at the annual meeting
of the Psychonomics Society (Houpt & Fifić, 2013; Thiele, 2014).
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